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VIBRATIONS OF DOUBLY-ROTATED-CUT QUARTZ PLATES

WITH MONOCLINIC SYMMETRY*

R.D. Mindlin
P.O. Box 385, Grantham, NH 03753

ABSTRACT: For certain doubly rotated cuts of quartz, the elastic

stiffness constants have the same symmetry and absolute values as those

for certain rotated-Y-cuts; but four of the thirteen constants have signs

reversed. Mathematical solutions of corresponding problems for the two

types of cut have the same form but the numerical results may be the same

or different according as the constants with changed signs enter the so-

lution as even or odd powers or products. Examples of both are exhibited.

I. Equations for Doubly-Rotated-Cut Quartz Plates

Alpha-quartz has an axis of three-fold symmetry, say X3 , and

three axes of two-fold symmetry one of which is designated as X1 in a

right-handed, rectangular coordinate system Xi , i=1,2,3. A doubly

rotated set of axes is obtained by rotating the Xi  system a positive

angle e about X, and a positive angle * about X. to a new

Investigation supported by the Office of Naval Research,
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orientation x . The direction cosines Xij' of the xi  axes with

respect to the X axes are

Xl X2  X3

Xi 11 = Cos 0 912 = sin Z £13 = 0

x2 Z 21 = -sin 0 cos e (122 Cos Cos ) 23 sin e

x3 J 31 = sin sin 6 32 " cos sine L33 = cose

Rotated-Y-cut and doubly-rotated-cut plates are cut with faces perpendicular

to x2 , as shown in Fig. 1.

The elastic stiffness constants crstu, r,s,t,u = 1,2,3 (or, in the

reduced indicial notation: cpq, p,q=zl...6), referred to the rotated axes

xi ,are expressed in terms of the constants Cjk, referred to the Xi

by

crstu = jklri sjZk (2)

summed over i,j,k,i - 1,2,3.

Of the 21 possible constants c 0( C0 p) , referred to the Xipq qp
coordinates, only six are independent inasmuch as, for a-quartz I1),

o22 ' 11 c 4, 2  c 3 , o 14 C56  2 6 6  1 o 12

C0 0C 0C 0 0 0 0 0 0c 1 5 c 2 5 c 3 5 =c 4 5 c 1 6 "c 2 6 =c 3 6 c4 6 c 3 4  0.

'(-)
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The values of the remaining c 0 as given by Bechmann [2], are

0p

c0=86.74 c 0  = 6.98

c0= 107.2 c 0  = 11.91 (4)
33 13

c0= 57.94 c 0 -17.9144 14

in units of 101 dynlcm2  or 10~ N/ni

From (2) and (3) we have

rstu 1i risl ti ul+ r2 s2 t2 u2 + 2. 2.s +k222.1 tl u2 't2ku)

33 r3 s3 t3 u3

+44[(Z222 3 + 
2.r32 s2)(tu3t t2+ (~r3-'sl1jr1 2.3) (2t32u1+2t1.u3)]

+ 1 3[2. 3. 3~ti 2ul + Zt22.u2) + tt3-u3(j'r1 2s1~tr22s2))

+14 (222 3+2.3 22 "t1 2ul 't22 + t 2 u3tt3 u2)(2.rl2.51-'-2. 2

+ (.tri s2+r2. 1 l) zt3Zu1 +2.tlp23) + (Ztl2.2+2.t22.1)( 2 r32.sl 2. 12s3)])

(5)

Finally, upon substituting (1) in (5), we find
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C 
O

11 11cl

c12  c 2 os 2e + c 3 sin 2e + c 4 sin 2e cos 34
0 2 cos2  1

c13 c 2 sin2e + c13 -c 4 sin 26 cos 3

c14 " (c3 - c 2) sine cose + co4 cos 2e cos 3

cl5  14 cose sin 34

C16 a c14 sine sin 3o

= c 1 cos 4e + c 3 sn4e + (c74 + 1'c'3) sin
2 2e + 4 c14 sine cos 3e cos 3

1 Ilc0+oo o 223 (c1 cc-2 C13  c44) sin 2e + c13  Y c14 sin 4e cos 3€

C24 = - c1 sine cos 3e + c33 sin 3e cose + 1 (c44 +1 co3)sin4e
o

-c14 cose cos 3e cos 3¢

c2 5  co4(3 sin
2e - 1) cose sin 3€

c26  3 c14sin e cos e sin 3y
o0 oe+c cos4e +(~ o .

c CO sin4e + c33 (c4 +I c13 ) sin 22e + 4 co4 sin e cose cos 3,

c34 -c ; sine Cos e+ c0 sine cos 3 -I (c 4+ c;')sin 4- c sine sneo s 30

c z - 3 c14 sin2e cose sin 34
C36 = c 4(3 cos2e - 1) sine sin 3

C44 -(C 1 + c 3  C13 -4c 4 ) sin2e + c + c~ e
2

4 c104(3 cos2e - 1) sine sin 30

C46 'c 4(3 sin2e - 1) cse sin 3z1 ( o0 0 2 0 0

c55 = (C11 - C42) sine + c44 case- c14 sin 2e cos 3

C56  - - . c 4 ) sin 2e + c 14 cos 2e cos 3

C a.c01- o o 0cs3

C66 " -C 2) cos
2e+ c sin2e1+ c 4sin 2e cos 3 (6)

lion)



These are the c pq which appear in the stress-strain relations referred

to the x1

T ir ijkt ki o p =cpq Sq (7)

in which the strains, Sij or S p, in terms of displacements, u.i are

S 1= S1= U 11  2S 23 ' 4 = U 3,2 + U2 ,3

S 2= S2= U 2 2  2S 31 - 55 = U1, + U3  (8)

S 33 = 5 3 = U3,3  2S 12 2 = = U2 ,1 + U1 ,2

Upon substituting (8) in (7) and the result in the stress-equations

of motion:

T..'i= pU. (9)

we find the displacement-equations of motion:

D = pU. (10)

or

D ll+ D 12 u2 + D013 u3  P pu1

D 1l+ D 22u2 + D23u3  P U2 ,()

D 31U1 + D 32u2 + = 3 PD 3,
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in which the D.j( Di) are the differential operators

c11 1  c66 2  c5533  c56  c2 3 ++2c, Y~2
D2 + a + c5a + 2 c a2a + 2 cia3a + 2 c ala

22 c223+ c44 3  c66 1  c64 3 +1  c26 +2  c2 4 2 3 ,

0 332 5521+ c442+2 c4 5al3 2 + 2 c34a2a3
+ 2 c35 3a1 ,

012 2(12)D a2axixa 2 a 21ax

where i a= + a2 a2 2

For traction-free planes parallel to the coordinate planes, it is

required that

on xI = constant:

Tll--T l = c1iSl + c12S2 + C13S3 + cl 4S4 + c1sS5 + c16S6 -- 0,

=I -- T6 = c61Sl + c62S2 + c63S3 + c44+ c65S5 + c66S6 --0, (13)

31 = c S + c52S2 + c53S3 + c5 4S4 + c5 5S5 + c5 6S6 -- 0 ;

on a constant:

2 c5 6  c61S1 + c62S2 + c63S3 + c64S4 + c65S5 + c66S6 -- 0,

S= T2 = c21S1 + c22S2 + c23S3 + c24S4 + c25S5 + c26S6  , (14)

T = T c 41S1 + c42S2 + c43S3 + c44 S4 + c45S5 + c46 S6  0 ;
12 6 61 1 62 2 63 3 64 4 65 5 66
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on x3 = constant:

T31= T5 = c51S1 + c52S2 + c53S3 + C54S5 + c55S5 + c56S6  0,

T = = c41S + c 4 + C S 4 + c S 4 + + c46S6 = O, (15)

T33 = T3 = c31S1 + c32S 2 + c33S3 + c34S4 + c35S5 + c36S6 = 0.

II. Rotated-Y-Cuts vs 600 Doubly-Rotated-Cuts

CASE A. If 0 = 0 e 0 (the rotated-Y-cuts) then sin 30 = 0 cos 3 = 1

and, from (6),

cl5 =c 6 =c25 = c26 = c35 = c36 = c45 = c46 = 0. (16)

The remaining 13 constants are those for monoclinic symmetry with x, the

digonal axis.

CASE B. If 0=600, e#O (doubly-rotated cuts), then sin 34=0,

cos 3=- and (16) again hold so that the symmetry is the same as for

rotated-Y-cuts. Even if 6 is the same in A and B, all the surviving

constants in B (except for c,, which remains fixed) are different from

the corresponding ones in A as the last term in each cpq has its sign

reversed. However, if 8 in B is the negative of e in A , nine of

the constants are the same for the two cuts and the remaining four have

the same absolute values in A and B but are of opposite sign.

IL
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To summnarize the properties of the two sets of constants c (o ,0):
pq

c pq(0,8) = c p(600,-6) for pq -11,12,13,22,23,33,44,55,66,

cq(0 ,e) = -C p (60*,-e) for pq =14,24,34,56 *(17)

The displacement equations of motion reduce to

(C a2 +C a2 +ca2+2)U+ +c11 1  c66 2 +c55 3  52'3a~ +~ 12+c66)Y~2 + c4c6)31u

+ EUc 13 +c55)'3al + (c14+c56)a a23u3  pU1 P ,

2 2 2

+ [c56a + C a + C a+ (c23+c4Q~ 3 u U

(c14 c56 a3 u1 + [c a 2+c 2~ 2~

,2+c6)al2 +(,4+56)33 1 6 1 24 2 +c34'3 +(c23+c44)'2a3]u2

+ c a2 +c a2 2 +
+(33 3 + 55 1 + c44a2 + 34 2 3)u3  = P U3

and the conditions (13), (14), (15) for traction-free boundaries reduce to:
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on x, constant:

T l = T1 = cllUl1  + c12u2 ,2 + c13u3,3 + cl4 (u3, 2 + u2 ,3) 0,

T12 = T6 = C56 (u1 ,3 + u3,l) + c66 (u2,1 + ul, 2 ) = 0, (19)

Tl3 = T5 = c5 5 (ul, 3 + u3,l) + c56(u2,1 + ul, 2) = 0;

on x2 = constant:

T21 = T6 = c56 (ul, 3 + u3,1) + c6 6(u2,1 + ul, 2) = 0,

122 = 12 = c12U1 ,l + c22u2,2 + c23u3, 3 + c24(u3 ,2 + u2 ,3) = 0, (20)

T23 = T4 = Cl4U,l, + c2 4u2 ,2 + c34u3,3 + c44(u3 ,2 + u2 ,3) = 0;

on x3 = constant:

131 = 5 = c55 (ul, 3 + u3 .1 ) + c56 (u2 ,1 + Ul,2)-,

132 = T4 = Cl4ul, l + c2 4u2 ,2 + c34u3,3 + c44(u3,2 + u2 ,3)=O, (21)

133 = T3  C 3ul,l + c23u2 ,2 + c33u3,3 + c34(u3,2 + u2 ,3) =0.

Any solution of the equations of motion (and boundary conditions, if

any) referred to rotated axes with 0 =0, 6=6' is the same solution, at

least in form, referred to axes with 0=600, 6=-' . Whether or not

the solutions are the same numerically depends on the occurrence of c14,

c 2 4 , c 3 4 , c56 as even or odd powers or products in the resulting formulas.
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In the following Sections, we review solutions obtained previously

for c pq(0,e) and determine if the transition to c pq(600, -0) changes

the numerical results.

III. Plane Waves in a Plate

In a plate with faces at x2 = + b, we consider waves propagating

in the direction of the two-fold axis of symmetry x,:

u I  A1 sin( 2x2 + t3x3) sin(Eix I - wt

u2 = - A2 cos( 2x2 + &3x3) cos(yix I - (22)

u3 = - A3 cos(&2x2 + &3x3) cos(yix I - .

Upon substituting (22) in (19) and setting the determinant of the coeffi-

cients of the Aj equal to zero, we find the equation

jij - 6ij V = 0, 0 ij = 'ji (23)

in which 6.. is the Kronecker delta,XII
X11 = 16I2+82,552 + 2 Z5 6 oT, A23 " Z5 6 +C2 482 + Z34 + (Z23+44)ar,

;'22 0 1 +C228 +4T 2 +2 Z2 4ar, X3 1 = (Z14+c5 6)0 + (Z13+Z5 5)r, (24)

33 a Z 55+C4402+Z3312+2 34o r. )A12 = (1+Z12)0 + (Z14+Z56)r

am=



Cpq cpq/C 6 6 2 1& r 3 /& 1, 2 2 266 ,

(25)

In (25), a and I are the ratios of the wave length along x, to the

wave lengths along x2  and x3 , respectively; V is the ratio of the

velocity to the velocity v (c 6 6 /p) 4 ; i( = 2E1 b/iT) is the ratio of the

thickness, 2b, of the plate to the half-wave-length along xl; and a

is the ratio of the circular frequency w to the frequency lv/2b.

For given B and r , (23) is a bicubic in the velocity ratio V

V6 + BV4 + CV2 + D = 0, (26)

in which

B = - (x11 + A22 + X 33)

C X A +A + AX X2 X 2 A2
2 33 33 + A11 22 23 31 12 (27)

0 A2 + 2 + 2 X X0 11 23 + 22 31 + 33 12 - 11 22 33 -2 XA23A31 12

The coefficients of the bicubic are different for c14,c24,c34,c56

positive and negative. Hence, for given 6 and r , the roots of (26)

yield different sets of velocity ratios VI V2,V3 for the rotated-Y-cut

with cpq(0,e) and the doubly-rotated-cut with c (600, -e) An ex-pq pq

ample is illustrated in Fig. 2 in which either $ is the abiscissa and

r=l0 or vice versa. In either case, the lowest velocity ratios V3

exhibit little difference for the two cuts --and this is the branch which
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would contribute predominantly to the fundamental thickness-shear mode of

the plate. However, the differences for the upper velocities are larger,

at least for large B and F --as much as 13% for a = F = 10. These

differences survive any boundary conditions that may be applied.

IV. Ekstein's Solution

It will be observed, in Fig. 2, that the velocity ratios are the

same for Case A and Case B if r (or a) is zero. This is the situation

for modes with straight crests along x3  (or x2 ). In the case r= ,

X23 and A3 1 change sign, in the passage from case A to Case B , but

they enter the coefficients of the bicubic (26) only as their product and

as squares --resulting in no change in roots. To examine whether this per-

sists after the introduction of free faces of the plate, we consider Ekstein's

solution [3] for modes with straight crests along x3  in a plate with free

faces on x2 
= +b.

With F= 0 , and fixed and V , (23)yields three roots

2
an n=1,2,3. Thus, for steady state vibrations, (22) may be written as

u = Aln sin &lnX2 sin iXl e

u2  A2 n cos IBnX2 cos 1xil e (28)

u3 A3 n cos &1'nx 2 cos 1xil e
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Then the boundary condi :nns (20):

T2j = 0, j=1,2,3, on x2 = tb, (29)

result in Ekstein's frequency equation; which may be written in the form [4]

'win' = 0, i,n=1,2,3, (30)

where

"ln (3nLIn + L2n + z56L3n) cot anl
b

P2n = 12Lln + Sn(R22L2n + Z24L3n) (31)

"3n = Cl4Lln + Bn(R24L2n + c44L3n)

in cof(ni - 6niV)/cof(n . (32)

In the passage from c pq(0,) to c pq(600, -0), the Lin and,

hence, the Pin (which depend on c1 4,c24,c5 6 ) change sign for subscripts

13,31,23,32 while the remaining terms in (31) and (32) do not change. But

those Pin which do change appear only as product pairs in (30) and, hence,

the roots of (30) do not change. These roots are usually depicted graphic-

ally as a many branched dispersion relation between 9 (as ordinate) and

1 (as absicissa):

(33)



-14-

as illustrated in [4]. Alternatively, the abscissa could be 1/z,

Q= 0(l/z) (34)

Suppose the plate has additional bounding planes xl ±a at which the

conditions are uniformly point-mixed, e.g. vanishing u2 ,T11,Tl3 correspond-

ing to "simply supported" in the elementary theory of flexural vibrations of

plates. For real roots of (30), these conditions are satisfied by &1 =Mr./2a,

where m is an even integer; so that, for real roots, the dispersion rela-

tion converts to

= n(a/mb). (35)

Elimination of m from the abiscissa requires only that each branch of the

dispersion relation (35) be replaced by a sequence of branches obtained by

multiplication of its absicssa by a sequence of integers. In this way, the

branches of the dispersion relation for the infinite plate are converted to

the branches of the frequency spectrum, 0 vs a/b, of the "simply supported"

plate. As the process does not involve c14,c24 and c56 anew, the fre-

quency spectrum is not altered by a change of c pq(0,6) to c _(600,-e).

There is no closed solution of the three-dimensional equations for

the case of free boundaries at x, + a and the situation there is not

obvious inasmuch as c1 4 and c56 enter into the traction-free conditions

TI * T2 T1 3 ' 0 on x1 Z±a (36)

as may be seen in (19).
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V. Effect of Free Edges

As a substitute for the unavailable extension of Ekstein's solution

of the three-dimensional equations to accommodate a pair of parallel, free

edges, there exists a solution of two-dimensional approximate equations [5].

For the case of straight crested flexural waves travelling in the direction

of xI  in a plate with free faces at x2 = ±b, the three dimensional

displacements are approximated by

uI = x2 ,(xl)e
i  , u2 = U2(xl)e 

i t , u3 = U3(xY)e
i t  (37)

and the differential equations governing them are

KC 56U3,11 + K 2c66 (U2,11 + ll) - - P 2U2 9

c55U3,1 1 + Kc56 (U2 ,11 + 'l,l) = - P2 U3  (38)

Y'1'Pl,ll - 3b- 2Kc5 6 U3 ,1+K2 c6 6 (U2 ,+ij 1 )2. - 2D 1

where

K 2 = r212 yl= c 2 /C- 2 -C2/C(9
2 22 I c11"c 2/c22  (c14  c12c24 ) /(c44 c 4/c2 2)" (39)

There is no change of sign of yll with change of sign of Cl4 and c24;

so only c5 6, in (38), changes sign with the passage from c pq(O,e) to

C pq(600,-e).

pq[
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The displacements are taken as

U 2 A 2b sin&x 1, U 3 =A 3bsin &x1  1 A4 Cos Ex. (40)

Then, from (38),

- -2 + - -'2 S2  
(1c564 A 2 +(c55& 3 )A 3 + c56&A 4  =0,(1

ZA2 56 A 3 + -'2kl 1 I- *Z )A4

where

55 " 55 /KC 66  C56 c56/Icc66  Y Y11 'Y 11/3Kz c66 -(42)

The determinant of the coefficients of the Ai in (41), set equal to zero,

is the equation

A2

which, for a fixed frequency ratio a, is a bicubic in E whose roots

are independent of change of sign of c14,c24,c56. Thus, as in the three-

dimensional case, the dispersion relation does not change with passage from

C pq (0,8) to cpq (6o09-e).
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2
For each 11, (43) has three roots n, n=1,2,3, and (41) has

three sets of amplitude ratios A2 :A3 :A4  Let An n=1,2,3, be the

value of A4  for the nth root 2 ;  and let4 n

A2 =. ^ 2 2 A ^2

a2n = A4 &n(C56 n +  -c55Fn)/An
A3 2

(xn -- A 3 -- 3 C56&n Q2/An '  (44)
^ 32 32 ^4

An ( 2n  )(^c55a n 3 ) 
- n

for each root Cn. Then (40) may be written as

3

U2  b An sin xn=l n2n n I

3

U3  = b An- 3n sin nXl (45)

3
01 n~-- An cos CnXl .

The conditions for free edges at x, =+a are: the horizontal and

vertical shears, N5 and Q, , and the bending moment, M,, vanish. Thus,

on x, +a ,

-14
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N5  = 2b[c55U3,I + K C56(U2,1 + 1)] = 0

Q, 2bK [c56U3,1 +Kc 6 6 (U2 ,1 + 1)) = 0, (46)

M, (2b3/3)yllIp1  = 0.

Upon substituting (45) into (46), we obtain

3

An cos na = ,

3

E An2n COSn a = 0 , (47)

3

1 AnJn  sin = 0,n=l a '

where

-In c55P3n&n + Kcs6 (c2n~n + 1
(48)A A

cc6& +nK nC+(ac'2n c 56(13n n 66 2n% +

The frequency equation is obtained by setting the determinant of the

coefficients of the An in (47) equal to zero:

A1 tan a + A2 tan &2a + A3 tan &3a a 0 (49)
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whe ~ ~ ~ 1 A = ll223 - '322al3)

A2  E 2(313321 - _23 1l (50

A3  = 3(311&22 - 321&1l2)

Upon substituting (44) in (48) and the result in (50), the frequency equation

(49) becomes

t2_-)tan 1a A 2 - tan 2a 2 -21 tan E3a 0: (51)

an equation which does not change when c pq(0,e) is replaced by c pq(600,-0).

VI. Vibrations of a Strip

An exact solution of the three-dimensional equations exists for

coupled thickness-twist and face-shear modes of vibration in a rotated-V-cut

strip with a parallogranunic cross-section and all four faces free of traction

[6]. The displacements are u2 zu3 0 and, omitting a factor eht

ulzA sin &2x2 Cos t3(E56x2 - x3) + B sin E~2sin FC3(C56x2-x3)

+ C Cos 2 X2 Cos t 3(C 56 C2 - x3) + D cos &2x2 sin &3(Z56x2-x3)

(52)

where c 56 'c 56/c 66 , as before in (25).

AreI
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The equations of motion (18) are satisfied if

2 = 2 ~ 2 2 /C(53)pw C66 2 + Y5593  Y55 c55 6/c66

and the faces at x2 - +b satisfy the traction-free conditions (20) if

2E2b = m (54)

where m is an odd integer for solutions A and B and an even integer for

solutions C and 0.

A pair of planes parallel to the xl-axis, making dihedral angles a

with the xl -x2  plane and distant 2c cosa apart, as illustrated in Fig. 3,

are free of traction if

a= arc tan c56 (55)

and

2&3c = nit (56)

where n Is an even Integer for solutions A and C and an odd integer for

solutions B and D.

The frequencies are

W p n+ y(57)\
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When c pq(O,e) changes to c -(60°,) ' the frequencies do not

change as c56  enters as c6 but the mode-shape (52) changes and a

in (55), is reversed in sign so that the cross-section changes, as illus-

trated in Fig. 3. The values of +a for the full range of values of e

are illustrated in Fig. 4.

(I

!~



-22-

REFERENCES

[1] W.P. Mason, Piezoelectric Crystals and their Application to Ultrasonics,
0. Van Nostrand Company, New York (1950).

[2] R. Bechmann, "Elastic and piezoelectric constants of alpha quartz,"
Phys. Rev, 110, 1060-1061 (1958).

[3] H. Ekstein, "High frequency vibrations of thin crystal plates," Phys.
Rev., 68, 11-23 (1945).

[4] R.K. Kaul and R.D. Mindlin, "Frequency spectrum of a monoclinic crystal
plate," J. Acoust. Soc. Am., 34, 1902-1910 (1962).

[5] R.D. Mindlin and D.C. Gazis, "Strong resonances of rectangular AT-cut
quartz plates," Proc. 4th U.S. National Congress of Applied
Mechanics, 305-310 (1962).

[6] R.D. Mindlin, "Thickness-twist vibrations of a quartz strip," Int. J.
Solids Structures, 7, 1-4 (1971).



-23-

CAPTIONS FOR FIGURES

Figure 1: Rotated-Y-cut and doubly-rotated-cut quartz plates.

X, and X3 are digonal and trigonal axes of symmetry,

respectively.

Figure 2: Comparison of wave velocities for c pq(0,) and c pq(600,-0)
as functions of the ratios, a and r , of wave lengths in

the x2 and x3 directions to the wave length in the direction

x, of the wave normal.

Figure 3: Cross sections of strips.

Figure 4: Variation of dihedral angles, a , between face and edge

planes of strip for cpq(0,e) and cpq(60,-e) as functions

of .
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